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Abstract. Exact solutions for the dynamics of layered feedforward neural networks are 
presented. These networks are expected to respond to an input by going through a sequence 
of preassigned states on the various layers. The family of networks considered has a variety 
of interlayer couplings: linear and non-linear Hebbian, Hebbian with Gaussian synaptic 
noise and with various kinds of dilution. In addition, we also solve the problem of layered 
networks with the pseudoinverse (projector) matrix of couplings. In all cases our solutions 
take the form of layer-to-layer recursions for the mean overlap with a (random) key pattern 
and for the width of the embedding field distribution. The dynamics is governed by the 
fixed points of these recursions. For all cases, non-trivial domains of attraction of the 
memory states are found and graphically displayed. 

1. Introduction 

In this paper we extend results previously obtained for layered feedforward neural 
networks. The family of networks considered was introduced by us two years ago [ 13. 
Subsequently, for the case of linear Hebbian couplings an exact solution of the dynamics 
was found, domains of attraction were calculated analytically [2], various extensions 
of the basic model were discussed [3], and chaotic behaviour of the dynamics was 
established and studied [4]. Here we present results for such networks with couplings 
that are not linear Hebbian; we treat the case of non-linearity [ 5 , 6 ] ,  dilution [ 6 ]  and 
also that of couplings obtained by the pseudoinverse method [7, 81. 

The main purpose for introducing these networks was to bridge a gap between 
what we can loosely term physicists’ and non-physicists’ models. 

Contributions of the theoretical physics community to the field of neural networks 
concentrated primarily (for recent reviews of physicists’ contributions see [9]) on the 
Hopfield model [lo, 111 and extensions thereof [6, 9, 121. The typical physicist’s 
network is characterised by three general features (see, e.g., [13]). First, it is 
homogeneous and uniform. By this we mean that all elements of the network are 
functionally similar. A second characteristic of these networks is the kind of task they 
attempt to perform; in most cases the networks studied by physicists deal with random 
patterns. That is, the network is to be designed in such a way that some preset, randomly 
selected states play a special role in its dynamics. Physicists are interested primarily 
in typical or average properties of an ensemble of such networks; these properties are 
usually calculated in the thermodynamic limit, i.e. when the number of basic units 
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N +CO. The third attribute of physicists’ networks is that in general a ‘cognitive event’, 
such as recall of a memory, is associated with a stable state of the network’s dynamics?. 

On the other hand, neural networks were studied by non-physicists (in particular 
computer scientists) for many years [8, 14, 151. The networks considered by this 
community differ, by and  large, from physicists’ networks in all the above-mentioned 
respects. These networks are usually not functionally uniform: for example, some 
units receive input only from the external world, and not from other units of the 
network. Whereas these elements constitute the input, a different set of units passes 
information out of the network, and serves to generate its output. There may also be 
processing units, which have no direct contact with the external world: all their inputs 
come from, and all their outputs go to, other units of the network itself. 

More importantly, most computer scientists are interested in finite networks, that 
perform specijic, well defined tasks, such as determining whether a given geometrical 
figure is singly or  multiply connected [16]. The answer of the network to a posed 
problem is read off its output units at some preset time. Hence stable attractors d o  
not necessarily play a special role in the dynamics of such networks. In many of the 
most popular and  widely studied examples the network architecture is purely feedfor- 
ward [ 151. 

The family of networks studied by us belongs to the non-physicists’ class with 
respect to the first and third of the attributes listed above. It has an input layer and 
can be viewed as producing an  output on some remote layer; hence it is inhomogenous. 
Being feedforward, it does not have stable attractors of its dynamics. Instead, a wave 
of activity that passes the layers sequentially may be interpreted [ 171 as a ‘cognitive 
event’. On the other hand, with regard to the second attribute, ours is a physicist’s 
network in that random patterns are assigned to each layer (including the internal or 
‘hidden’ layers), and average properties are calculated in the thermodynamic limit. 
We d o  not address here various learning schemes which generate internal representa- 
tions that help to realise desired input-output associations [ 18-20], 

Nearly all the analytic results for our model were derived [2, 31 by saddle point 
integration. In this paper we present solutions to a number of problems that were not 
previously treated in the context of layered networks. We solve these problems here 
in a simple manner, based on the observation that the fields generated by cells of layer 
1 on the units of layer 1 + 1 are Gaussian distributed independent random variables. 

The paper is organised as follows. In 9 2 the basic model, with Hebbian couplings, 
is briefly defined, and the Gaussian independent nature of the fields is established. 
Next, the basic recursions of the mean overlap and  of the width of the field distribution 
are rederived; these layer-to-layer recursions constitute the solution of the dynamics 
of our network. One of the most interesting observations that resulted from our studies 
was that the layered network behaves in a manner which is surprisingly similar to that 
of recurrent networks. Therefore we devote § 3 to a discussion of the similarities and  
differences between the layered network and two recurrent networks; the fully con- 
nected Hopfield model and  the strongly diluted model introduced and  solved by 
Derrida, Gardner and Zippelius [12]. In 9 4 we solve the layered model for a number 
of particular cases; first, the solution of static synaptic noise [5] is rederived [3], and  
the problem of diluted bonds [6] is solved by mapping it to the previous one. Similarly 
we solve the model with non-linear synapses (i.e. the bonds are non-linear functions 
of the Hebbian couplings [5]). Finally we present a solution of a layered network in 

t For some applications a stable cycle may be embedded in a network. 
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which the interlayer couplings were obtained by the pseudoinverse method [7, 8, 211. 
All the above-mentioned solutions appear in the form of layer-to-layer recursions. 
These recursions are analysed and the corresponding domains of attraction are calcu- 
lated and  presented in 5 5 .  Our results are discussed and  summarised in § 6 .  

2. The model: its definition and solution by Gaussian transforms 

The network is composed of binary valued units (cells, spins) arranged in layers: 

S f = * l  

where I = 1, 2 , .  , . , L is a layer index, and  each layer contains N cells. 
unit is determined by the state of the units on the previous layer I, 
the stochastic law 

P(S;+'IS: ,  Si,. . . , S : )  =exp(PSI  h ,  ) /2  cosh(phl") / + I  / + I  

hl+' = c +;. 
J 

The state of 
according to 

(2.1) 

Here JL is the strength of the connection from cell j on  layer I to cell i on layer I +  1. 
The quantity h:+' is the field produced by the entire layer I on site i of the next layer. 
The parameter p = 1/ T controls stochasticity; the T +  0 limit reduces to the determinis- 
tic form 

s:" = sgn( hj+ ' )  

The dynamics of such a network can be defined as follows. Initially the first (input) 
layer is set in some fixed state externally. In response to that all units of the second 
layer are set synchronously at the next time step, according to the rule (2.1), the next 
layer follows at  the next time step, and so on. Thus the response of the network to 
an  initial state is an  'avalanche' of coherent activity that produces the appearance of 
a sequence of states, on layer I at time 1. 

An alternative interpretation of this dynamics is as follows. Imagine a single-layer 
recurrent network with couplings K,,  in which units update their states synchronously 
(such as is the case of the Little model [22]). If we set in the layered network all 
JL = K,, i.e. independent of the layer index, the resulting layered network dynamics 
will be precisely identical to the dynamics of the recurrent network, with the layer 
index of the former playing the role of time for the latter. Hence every recurrent 
network is equivalent to a properly defined layered feedforward network [ 181. Letting 
the bonds depend on and  vary with the layer index is, therefore, completely equivalent 
to allowing the couplings of a recurrent network to vary with time. Therefore one can 
interpret solutions of these layered networks as an 'annealed approximation' [23] to 
the dynamics of networks with feedback. 

Returning to our feedforward network, we have to specify the bonds 51. These 
are chosen so that the network performs a desired task. A reasonable task for a layered 
network is to require that in response to a particular input, a preset sequence of states 
develops on subsequent layers. We consider the problem of embedding in the network 
different random sequences of patterns, associating pattern S;, with layer 1 ;  the pattern 
index p takes one of p = 1, 2 , .  . . , a N  possible values. These states, ti,, are the key 
patterns of the network. The interlayer couplings can be chosen according to any one 
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of a variety of standard learning procedures. The simplest choice is that of outer 
product, of Hebbian couplings [ 10, 221 

Other choices will be presented in § 4. 
By 'solving the model' we mean that for a given initial state, i.e. the state of the 

first layer, we can predict the state on layer 1 that results from the network's dynamics. 
Of course we predict the state in the sense of averages over the thermal noise associated 
with the dynamics, as well as over the choice of key patterns. An initial state is 
characterised by its overlap with the key patterns on the first ( I  = 0) layer: 

In this paper we consider initial states with finite overlap with one key pattern, i.e. 
My = O( l),  whereas for p > 1 we have ME = O( 1/m). With this initial condition we 
let the network develop in time according to the stochastic dynamic rule (2.1). Denote 
by M :  the overlap of any particular state { S ; } ,  obtained in the course of this dynamic 
process, for some particular choice of the key patterns {&}, by 

Our aim is to calculate the average overlap for I >  1: 

(2.4) 

= (Sf&?. (2.5) 
In this expression the brackets ( - ) denote thermal average over the stochastic dynamic 
process; the overbar denotes average over the key pattern assignments. With the initial 
conditions specified above, we expect M :  = O( 1 / n )  for all p > 1, whereas M :  may 
be of order unity. A network that corrects errors of the input is expected to start with 
a low but finite initial overlap with one key pattern, and yield increasingly larger 
overlaps on subsequent layers. In order to compress notation we suppress the layer 
index, and  prime all variables associated with layer 1 + 1 (i.e. use S: and &). Unprimed 
variables refer to layer 1. Another simplifying notation is the following: all brackets 
and overbars will refer to averages taken over primed variables. The fact that unprimed 
variables have also to be averaged over is implicitly assumed everywhere; as we will 
demonstrate, all unprimed averages are taken care of by the law of large numbers, 
and  only primed variables have to be averaged explicitly. Consider therefore 

ml =(CIS:?. 
First we perform the thermal average over the dynamics of the last (primed) layer. 
From (2.1) we immediately get 

m' ,=tanhP, .$: ,h:=tanhPH: 

where If: is the 'embedding field' associated with pattern v = 1. This can be rewritten, 
using (2.1) and (2.2), as 
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With respect to averaging over the patterns, we explicitly perform averages over t‘, 
keeping in mind that thermal and configurational averages are to be taken (if needed; 
see below) for previous layers as well. We can rewrite (2.6) as 

(2.7) 

The stochastic variable M ,  is the average of N stochastic variables t j l S j .  Therefore, 
using the law of large numbers we have 

M ,  = m ,  + O( l / m ) .  (2.8) 

Since we assume that M ,  = O( l ) ,  deviations of MI from m ,  can be neglected. Hence 
with respect to the first term in the brackets in equation (2.7), all thermal and 
configurational averaging has been taken into account. Turning now to the second term, 

we will show that it is a Gaussian distributed random variable. The essence of the 
method used throughout this paper is the treatment of the embedding field (i.e. the 
argument of tanh in (2.7)) as the sum of a ‘signal’, m ,  , and a Gaussian ‘noise’ x. Once 
the noise distribution is known, averages such as (2.7) can be performed by integration. 

Note that in (2.9) we also have 

M ,  = mu + O( 1/m) 
But since mu = 0 for v > 1 ,  we cannot replace M ,  by its average value and neglect its 
fluctuations. Keeping in mind, however, the fact that for v > 1 all M ,  = O( l / m ) ,  we 
note that the Lindeberg condition (see, e.g., [24]) is satisfied for x. 

Therefore we can use the central limit theorem, according to which the stochastic 
variable x is Gaussian distributed, with mean 

.f=O 

and variance 

A’= c 
Using the fact that = S,,,, we obtain 

(2.10) 

Recall now that M ,  are fluctuating (thermal and configurational fluctuation on layers 
below I +  1 were not yet averaged). However, we are summing in (2.10) over a N  such 
independent variables: invoking the law of large numbers, we can write 

(2.11) 
- 

A’ = CYN( M t )  + O( l/t‘N). 
In this equation the explicitly displayed averaging refers to the unprimed variables. 

Thus we can express (2.7) in the form 

(2.12) 
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This relation constitutes a recursion that determines the average overlap on layer I+ 1 
in terms of the average overlap m ,  and the width A’, both characteristic of layer 1. To 
complete the solution, a recursion for the width is also needed, in order to express 

, > I  

in terms of m, and A2. We must evaluate, for II. > 1,  

1 1  
N N I + ,  

( (M:)’)  =-+T 2 tanh(P&hI) tanh(P&hJ). 

(2.13) 

(2.14) 

Here, as before, the thermal average over the state of the last (primed) layer has 
explicitly been carried out. We still have to average over all 6, and take the thermal 
average over previous layers. We first rewrite (2.14) as 

(2.15) 

Again, we replaced M I  by m, , neglecting fluctuations, but kept M ,  for U > 1 .  Averages 
over 5’ are carried out, as before, by noting that the variables x, and x,, defined? as 

x, = c s:,5:JL 
v f l , ,  

are independent (for i f  j )  and Gaussian distributed, with mean f l  = 0 and width A. 
Furthermore, denote 

5:,5:1 = 77 &;,sJl = 77’. 

Hence (2.15) takes the form 

x tanh P ( T m ,  + M ,  + x )  tanh P(7]’ml + M ,  + y ) .  (2.16) 

Noting that M ,  = O( 1/m) we expand the integrand, and find to leading order in M ,  

1 
N ( ( M : ) ~ ) = - + I ~ ’ M ;  (2.17) 

with the constant I given by 

where 

dx 
q = (si)2 = [ exp[ -f(x/A)’] tanh’[ P (  m l  + x)]. 

(2.18) 

+ I t  is very important to realise that the embedding fields H, and H, are nor independent. Their correlation 
is M :  - 1/N. This correlation gives rise to the layer-to-layer recursive variation of the width parameter A‘, 
which in turn causes the appearance of non-trivial domains of attraction. 
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Finally, substituting (2.17) into (2.13) we find that the new width, (A’)’, is given by 

(A‘)2  = a + 1/3’A2 I = ( l - q ) z .  (2.19) 

Again we used the fact that summing over a N  fluctuating variables (M,)’ yields the 
average of this quantity (with respect to thermal and configurational fluctuations 
associated with layers below 1 + 1). 

In summary, the solution of a layered network with random key patterns on each 
layer and Hebbian interlayer couplings is given by recursions of the form 

dy exp(-;y’) tanh[P(m’+A’y)] (2.20a) 

(A‘+’)’= a +P’l‘(A‘)’ (2.206) 

with 

= (1 - q ‘ ) 2  6 cosh’p(m‘+A‘y) 

In the deterministic limit, P +CO, these recursions become 

m‘+’ = erf(m‘/fiA’) (2.21a) 

(A’+’) ’=  a +(2/.rr)  exp[-(m’/A‘)’]. (2.21b) 

In order to find the overlap on layer 1 + 1 we have to iterate these recursions. The 
initial state determines my, the overlap on the first layer, and 

A0 = a. 

These recursions were derived previously by a lengthier method. They were analysed 
for general a and T. We found two ‘phases’ in the (a, T, my) space; a memory phase, 
in which m\+ mT = 1 for large I ,  and a phase of no recall, in which m:+O. When 01 

and T are such that the memory phase exists, the network flows to mT= 1 provided 
the initial overlap is large enough: 

my> m:(a, T ) .  

Phase diagrams (i.e. domains of attraction) in the full (a ,  T, my) space can be found 
elsewhere [2]; here we display results graphically for T = 0 only (see § 5 ) .  

3. Comparison with the Hopfield model 

The essential mechanism leading to (2.20) and (2.21) is the Gaussian distribution of 
the internal fields h i .  For this the layered feedforward structure of the network is 
important since 

(3.1) 

and since the 6;:’ are independent random variables uncorrelated to the overlaps ML; 
h!+’ is a large sum of uncorrelated random variables. This does not hold for the 
Hopfield model, i.e. the completely connected feedback network. In that case the 
internal fields are given by [ 111 
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but M ,  is correlated to &”. Therefore, the distribution of h, has a more complicated 
structure; in particular, in thermal equilibrium the field h, acting on a site depends on 
and is correlated with the value of the spin S,  on that site. Nevertheless, the equations 
describing the stationary states are very similar for both models; the purpose of this 
section is to present their similarities and differences. 

Consider the Hopfield model with couplings 

I f  all bonds are occupied ( c  = l ) ,  the thermal equilibrium states of the model can be 
calculated by the methods of statistical mechanics [l l] .  If only a small fraction c of 
bonds per site is occupied asymmetrically, one can also solve exactly the complete 
dynamics [12]. In this case we consider c<< (log N ) / N  only; i.e. K = cN, the number 
of bonds connected to a site, is large, but with K << log N. 

In both versions of the Hopfield model, i.e. fully connected and diluted, as well 
as in the layered system the average overlap m of the stationary state with one pattern 
is given by 

m = j -& exp( -+z’) tanh j3( M + Az). (3.4) 

As in (2.20), the overlap is a Gaussian average of an embedding strength H = ( ,h,  with 
mean (H)= m, and variance ( H 2 ) - ( H ) *  = A*. A5 in 0 2, we denote thermal and 
configurational averaging by brackets and an overbar, respectively. However, the 
equations for the width A of the H distribution differ. One has, for the three models, 

A 2 =  a extremely diluted 

a 
A 2 =  

1 - p2( 1 - q)* 
layered 

full feedback A * =  “9 
[ I -  P ( 1 -  4H2 

with 

(3.5) 

where a = p / ( c N )  is the storage capacity. 
For the layered and completely connected network A depends on the state itself 

(through 4); hence the properties of these models are different from the extremely 
diluted model. In these two models (3.4)-(3.6) give a discontinuous transition from 
a high retrieval overlap m = 1 to m = 0. At zero temperature (j3 + C O )  this transition 
occurs when the storage capacity a exceeds a critical value a,=O.14 (Hopfield) and 
a, = 0.27 (layered), respectively. The diluted model, however, has a continuous transi- 
tion at a, = 2 /  7. 

For the diluted and layered models the dynamics can be solved exactly (in the 
latter case if the layer index I is interpreted as time step t ) .  Hence for these two models 
basins of attraction can be calculated. Both cases may be considered as an approxima- 
tion to the completely connected Hopfield network. The diluted approach is equivalent 
to neglecting correlations in the full network [25], while the layered structure is an 
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annealed approximation [23], i.e. at each time step the patterns are changed. Solving 
the dynamics yields a non-trivial basin of attraction only for the layered model; in the 
diluted case all initial overlaps, except m = 0, flow towards the attractor given by (3.4) 
and (3.5). 

We now sketch the solution of the three different models, to see why the stationary 
state is given by rather similar equations (3.4)-(3.6). Let us assume that the state is 
condensed into the pattern v = 1,  i.e. ( M ” )  = m8,, . For all three models the dynamics 

- 

(2.1) gives 
- 
(SI) = (tanh P h i )  (3.7) 

with h, = E J  .TISJ, where we have dropped the time or layer indices. 
In the diluted as well as in the layered model, h, is Gaussian distributed; in the 

first case because spins at different sites are uncorrelated [12] and in the second case 
because 6:;’ are independent random variables, uncorrelated to ML. Hence, to obtain 
m =(S,&,)  it is sufficient to find the first and second moments of the distribution of 
H, = h&,, . One obtains 

and 

(3.9) 

(3.10) 

hence one has A’ = a. In the layered model, however, the correlations (of order 1/N) 
between different sites yield (see the calculation of 0 2)  

(3.11) 

and hence (3.5) results. Now, with the mean m and variance A2, one can perform the 
average of (3.7) and obtain (3.4).  

In the densely connected Hopfield network the field distribution is not Gaussian. 
The results (3.3)-(3.6) have been derived using the replica method with a saddle point 
which is symmetric in the replicas [ l l ] .  One can, however, derive the same results 
without replicas, by using the cavity approach [26]. This method reveals the physical 
origin of the Gaussian average of (3.4) and (3.6). Here we want to present the cavity 
method in a somewhat simpler form. 

The thermal average of a spin in a system of N spins is given by [26] 

( S I )  = (tanh Ph, )  = tanh(P@JN-,)  (3.12) 
where (. . . )N-, is the thermal average of the system of N - 1 spins without spin Si. 
With (3.2) one has 

(3.13) 



2090 E Domany, W Kinzel and R Meir 

Note that ti” is a random number which is now uncorrelated to hence the 
average over tiY yields a Gaussian distribution of the variable (h i )N- l  (instead of hi in 
(3 .7) ) .  Therefore, the average of (3 .13)  is again (3.4) with m and A’= 

- m’. One finds 

By definition one has 

(3.14) 

(3 .15)  

For Y > 1 ,  ( MV)N-2 is a small quantity of order 1/m; hence the tanh can be expanded: 

= ( s J N - l , p - ,  + ( 1  - ( s , > X - l , , - 1 ) P t I Y ( M ” ) N - 2  (3.16) 

where (. . . ) N - l , p - l  is the thermal average of N - 1 spins in a model without pattern v. 
With the self-averaging quantity 

(3 .17)  

one obtains 

In the thermodynamic limit we expect that adding a spin or a pattern gives rise to a 
small correlation of order 1 /  N; hence we can approximate 

(MJN-1 - ( M J N - 2  4 N - l , p - 1 2  4 

and we obtain 

(3.19) 

(3.20) 

Note that (S,)N-l,p-, is uncorrelated to tIy; hence we can easily average the square of 
this equation, which gives 

(3.21) 

Using this in (3.14), one obtains the result (3 .5 ) .  As mentioned above, these results 
are not exact for the fully connected model. Apparently the approximation involved 
in choosing the replica symmetric solution of the saddle point equations [ l l ]  is 
equivalent to the approximation used here in (3.19). 
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4. Applications for particular cases 

In  this section we use the Gaussian method to evaluate layer-to-layer recursions for 
the overlap for various choices of the couplings that were not treated previously for 
layered networks. For completeness’ sake we also present the recursions for static 
synaptic noise, even though these were given elsewhere. Again, we use the same initial 
conditions on the first layer as before; i.e. significant overlap with key pattern 1, whereas 
for all v >  1 we have M ,  = O(l/v%).  

4.1. Static synaptic noise 

We consider the same problem as in P 2 ,  but with a noise term added [5] to the Hebbian 
couplings 

(4.1) 

Here z:  are independent, Gaussian distributed random variables, with mean and  
variance given by 

[ 4 I =  0 [z:z:mI = (YAiStkS,m8// (4.2) 

where [ ] denotes average over the synaptic noise. Following the notation of § 2 ,  we 
have 

The argument of the tanh has, as before, a ‘signal’ term, m,, since 

M ,  = m, + O ( l / n )  

but now there are two distinct noise terms: 

We have shown that x is Gaussian with 
- 

X = O  ,y2= M t = A 2  
Y >  1 

As to y ,  we have 

[PI = 0 

whereas 

(4.3) 

(4.4) 

Hence, using the central limit theorem, we conclude that the total ‘noise’ in the argument 
of tanh p in (4.3) is Gaussian distributed, with mean zero and variance 

(4.6) 8’ = A? + (Y A;. 
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Therefore we get 

du 
exp( - tu ’ )  tanh P (  m1 + Su).  

As in § 2, in order to complete the recursion, we must express 

(A’)’= c [((M1)2)1 
u s  I 

in terms of m ,  and A. We have for 1-1. > I 
1 1  
N N ,zJ 

[((M:)2)] =-+: c [tanh(PH:) tanh(PHi)] 

where 

(4.7) 

(4.10) 

Here we encounter again two Gaussian noise terms, with the same mean and variance 
as above. Therefore we obtain, using the same steps and arguments that led to (2.19), 
the relation 

(4.11) (A’)2  = CY + ZP2A2 

du exp(-4u2) 
& cosh2p(m+uS)  

The deterministic ( P  +CO) limit of the layer-to-layer recursions is [3] 

m:+I = e r f (m’ /aS’ )  

2 A‘ ’ 
(A’+’) ’=  CY+-(-)  7T 8‘ e~p[ - (m’ /S ’ )~ ]  

4.2. Dilution 

Consider the layered network with randomly diluted [6] Hebbian couplings: 

(4.12) 

(4.13) 

(4.14) 

where cf, are independent random variables, chosen from the distribution 

p(c,J)= C S ( C , J ,  1 ) + ( 1  -C)6(C,,,O). (4.15) 
The concentration of non-zero bonds is c. Using again the notation of § 2, and denoting 
by [ . ] averages over the variables cfi, we want to calculate 

ml, = [(5:ls:)1 

(4.16) 

where 

(4.17) 
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It is important to note that A?+, as defined here, should also carry a site index i, since 
it depends on c,,. Fluctuations of A?+ are caused by three sources; thermal, configur- 
ational ( 6 )  and due to dilution. Since S, does not depend on the c,, we have 

[cs5,+S,I = [C!,I6,+S,. (4.18) 

Therefore, using the law of large numbers for the first term in the argument of the 
tanh in (4.16), we get again the ‘signal’ 

GI = m,+~(l/&V). (4.19) 

As to the noise term 

x =  “> c 1 6:,6:&” (4.20) 

its average and variance are given by 

[ X ] = O  (4.21) 

where again only averages (over patterns and dilution) associated with the last layer 
are explicitly displayed; all averages with respect to earlier layers are implied. The 
variance of the noise term can be easily rewritten as 

[*]=a[’-’]+ C W > l  MZ. (4.22) 

This variance is reminiscent of (4.6) for the case of static synaptic noise. Indeed, 
denoting 

1 - c  -- 1 M:=A’ - A; 
V > l  C 

allows us to rewrite (4.22) as 
- 

[x’] = 8’ = A 2 +  aAi. 

(4.23) 

(4.24) 

The average overlap mi is given by the same expression, (4.7), as in the case of static 
noise; the width of the effective noise distribution is A, given by (4.23) and (4.24). 
Again we obtain 

xtanhP(Tm,+A?;,+x) tanh(q’m,+A?j,+y). (4.25) 

Here we emphasised that A?+ depends on i and j ,  two distinct site indices. Using the 
law of large numbers we get 

(4.26) 

As before, expanding (4.25) in A?+, summing over p, and using (4.26) we obtain 
precisely the recursion (4.1 1 )  for the variable (A’)2. Therefore, the problem of dilution 
maps exactly onto that of static synaptic noise, with the effective variance of the noise 
given by (4.23). 
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4.3. Non-linear synapses 

We turn now to the case of couplings of the form [5, 61 

(4.27) 

where F ( x )  is a (generally non-linear) function of x. This general class of models 
includes some interesting cases, such as clipped synapses (i.e. J ,  = sgn[2(f:’(jY]), and 
selective dilution (see below). Derivation of the recursion for this case is along the 
same lines as that of the previous sections, and of the similar problem for fully connected 
Hopfield networks [5, 61. The restrictions on F are also similar to those given in that 
case [6]. 

As before, we wish to calculate the thermal and configurational average of the 
overlap 

mi = ( [ : ,S , )  = tanh[PH:,]. (4.28) 

The embedding field is now given by 

(4.29) 

To perform the average over t’, we found that Hi, is,to a good approximation, a 
Gaussian distributed random variable, with mean value and  variance given by 

- - 
H i ,  = m , F ‘  

where 
- 

- d F  F’=- 
d x  

and  
- -  

(H:l -H:,)2 = (F)* 1 M t +  C~[F’-(F‘)~]. 
1 > 1  

Using the notation 

(4.30) 

(4.31) 

(4.32) 

it is convenient to define a width parameter 

sz = A‘+ a ~ ;  (4.33) 

and an  effective inverse temperature 

p = PF’.  
- 

(4.34) 

In terms of these variables, we obtain for m ;  the same recursion (4.7) as we had for 
the case of static synaptic noise, but with P replaced by p: 

t a n h p [ m , + x ] .  (4.35) 

The recursion for the width is derived as before, and we find for (A’)’ the recursion 
(4.11), again with p replacing P. 
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4.4. Pseudoinverse 

The network with Hebbian couplings, (2.2), had the disadvantage that for a > 0 the 
internal fields A::’ = ZJ Jfi& of the patterns had a broad distribution. Hence the 
patterns are not stable fixed points of the dynamics (2.1) due to the negative Gaussian 
tail of the distribution of (::’A::’. But there is a matrix Jfi which gives a sharp 
distribution 

s::’h::’ = 1 (4.36) 

for all v, 1 and i. This does not only hold for random patterns, but for any set {&} 
of linearly independent patterns too. Since there are at most N such patterns, the 
network has a maximal capacity of a, = 1 .  

This matrix can be calculated from the pseudoinverse [7, 81 of (4.36); for the 
layered structure one obtains 

(4.37) 

with the correlation matrix 

(4.38) 

Jfi has two properties which are important for an associative memory: (i) it is a projector 
onto the linear space spanned by the p patterns &, i.e. the orthogonal space is projected 
out; (ii) of all matrices for which (4.36) holds, Jfi has the minimal norm Z, (Jfi)2; hence 
one expects a maximal basin of attraction [27]. The completely connected feedback 
network has been studied previously [7]. A feedforward network with one layer of 
couplings (4.37) has recently been considered [21], and the extremely diluted 
anisotropic network [ 121 with these couplings was solved exactly [28, 291. 

Here we want to solve the layered network with the pseudoinverse couplings (4.37). 
For simplicity we consider an initial state SP of layer I = 0 which has a non-vanishing 
overlap my with pattern Sp, only, i.e. one has 

1 
[GI”$ =zC 5:”SL. 

I 

(SP) = sP,m?. (4.39) 

The brackets denote here an average over initial states. The internal fields 

h ; + ’ = c  . g y f l C I C ; ’ ] ” P M :  (4.40) 

are Gaussian distributed, since 5::’ is uncorrelated to C, and m:. Let us consider the 
average over the initial state first; one obtains for the second ( I  = 1 )  layer 

(4.41) 

Y P 

(A:) = C JEW,”) = t t l m ?  
J 

and 

(A’)’ = (( h :)*) - ( my)’ 

(4.42) 
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The norm of the matrix JZ is self-averaging with the result [21] 

ff ( J i ) 2 = - .  
j 1 - f f  

Hence one obtains 

(4.43) 

(4.44) 

Note, that (Sf )  does not depend on i, hence one does not have to average over the 
patterns [f,; the average over the initial state Sp is sufficient to obtain the equation for 
the overlap mt. 

The result (4.44) is of the same form as the equation for the initial state (4.39). 
Furthermore, one has (h: h L) = (It:)( h L), and hence (S j  S:) = (Sj)( SL). Therefore one 
can apply the calculation that led to (4.41) and (4.42) to any layer 1, with the result 

d z  
m'" = z e x p ( - i z 2 )  tanh[p(m'+A'z)]. 

At zero temperature this reduces to 

m'+' = e r f [ m ' / a A ' ] .  

These recursions are supplemented by that of the width 

a 
(A' )?  = - (1 - ( m ' ) 2 ) .  

1-f f  

(4.45) 

(4.46) 

(4.47) 

The width of the field distribution is zero at m0 = 1, hence at T = 0, m' = 1 is a fixed 
point as it should be. For mo# 1 the width diverges for aC= 1. 

Note that one has 

q' = ( ~ j ) '  = (4.48) 

1 .o 

0.8 

0 6  
m 

0.4 

0.2 

0 

I I 
I " ' , ,  

0 2  0 4  0 6  0 8  1 0  
U 

Figure 1. Fixed points of equations (4.46) and (4.47) as functions of storage capacity a 
for different temperatures T (from left to right: T =  0.9,0.8,0.7,0.6,0.5, 0.4,O). For T S  0.6 
there exists a lower branch of unstable fixed points. The basin of attraction is the range 
of overlaps between the upper and lower branches. 
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which is the same result as in the full feedback network [7]. In both models this holds 
only if the initial state or the equilibrium, respectively, are condensed into a single 
pattern. Mixture states add an additional width to the field distribution which is much 
harder to calculate than (4.46); this has not yet been done for the layered network. 

For the corresponding extremely asymmetrically diluted network one obtains [28] 
the same equations as in the layered model, (4.45)-(4.47). 

Figure 1 shows the attractor and the basins of attraction as functions of a for 
different temperatures (taken from [29]). At zero temperature and a < 1, m = 1 is a 
stable attractor. For small m, (4.47) gives an unstable fixed point at 

(4.49) a ,  = 2/ (2 + T) = 0.39. 

Hence for a < a ,  the network has a maximal possible basin of attraction; an initial 
state with any mo = O( 1) > 0 will flow to m* = 1. 

5. Basins of attraction of the various models 

In this section we display graphically the basins of attraction, as obtained from the 
various analytically obtained recursions. We display only results of the deterministic 
( T = 0) limit of the recursion relations. 

Consider first the results for the basic model with Hebbian couplings, (2.2), to be 
referred to as outer product or OP. The problem we solved here concerns the case of 
an initial state with sizeable overlap, mo, with a single key pattern on the first layer; 
overlaps with all other ( v >  1) patterns are of order 1/m. In this case we had the 
following layer-to-layer recursions for the overlap and the width of the embedding-field 
distribution: 

( 5 . 1 ~ )  

(A’+’)’= a + ( 2 / ~ )  exp[-(m‘/A’)’]. (5 . lb )  
In order to find the overlap on layer 1 + 1 we have to iterate these recursions. The 

m l + l  - - erf( m’/f iA’)  

initial state determines mo, and the overlaps with patterns Y >  1 determine A’ via 
” 

(Ao)’= a. 
Y> 1 

These recursions were analysed by first locating their fixed points. For a < a ,  = 0.27 
a stable branch, with m*= 1 coexists with an unstable branch; the two merge at a,. 
In addition to these two branches one has a stable fixed point at m* = 0, for all values 
of a. For a > a,  all initial states flow to the m* = 0 fixed point; however, for a < a,  
the overlap develops in a manner that depends on its initial value. If the initial overlap 
is large enough, i.e. 

m0> m:(a)  

we obtain m’+ m*= 1 for large 1, whereas m‘,+O for my<m:(a) .  A convenient 
measure for the size of the domain of attraction of the memory state is its radius R, 
defined by 

(5.2) 
R measures how close the initial configuration must be to one of the key patterns in 
order to guarantee convergence to that key pattern on subsequent layers. 

R = 1 - m:. 
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We present below results for various choices of the couplings. For all cases (with 
the exception of the pseudoinverse) we have demonstrated that the recursions are the 
same as those derived for OP with static synaptic noise with width Ao:  

m{+' = erf(m'/&s') 

( = (A') '+ a A i .  

By iterating these recursions for different A. we obtain the critical values ac(Ao), 
presented in figure 2(a). As expected, the storage capacity decreases with increasing 
static synaptic noise. An additional degrading effect of the noise is shown in figure 
2(b):  the limiting overlap with the recalled pattern, m*,  also decreases. We present 
in the figure only the critical overlap, i.e. m*(a,) as a function of A,. 

0.85-'  ' " 1 ' " ' 1 ' " ' I " ' ' 1 ' " ' 1: 

( 6 1  - 

- 

- 

- 

l , , , , l , , , , i , , , , l , , , , I  i 
0 0.5 1.0 1.5 2.0 2.5 0 0.5 1.0 1.5 2.0 2.5 

A, 
Figure 2. ( a )  Critical storage capacity (I, as a function of the width of the static synaptic 
noise distribution A,,. Various models are mapped onto this problem, with different values 
of A,,  as indicated. ( b )  The limiting overlap with the recalled pattern, m*(ac)  as a function 
of A o .  

Next we demonstrate the effect of the static noise A. on the basin size. In figure 
3 we plot R as a function of A. for various values of a. As can be expected, the basin 
size decreases with increasing a and static noise Ao. 

The different models studied above (see 0 4) map onto different initial values for 
the width of the static noise. We had, for dilution, 

(5.4) A; = (1 - c ) / c  

where c is the concentration of bonds present, whereas for non-linear synapses 
- -  

A i  = F 2 / (  F')2 - 1 (5.5) 

where F ( x )  is the non-linear function that gives the coupling J h  in terms of the outer 
product x = ( l / a )  . $ ~ y T ' ( ~ y  (see (4.27)). We give below results for three cases; 
clipped (c), optimally clipped (oc)  and linear diluted. The function F ( x )  takes for 
the three cases the following forms. For the clipped case 

F ( x )  = sgn(x). 
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1 0 : ' " ' 1 " " 1 " " 1 " " I " " l " " .  

static noise width A,, for various values of the storage storage capacity a, evaluated at values of A. (the 
capacity a (from left to right: a =0.25, 0.20, 0.15, effective static noise width) that correspond to 
0.10, 0.05). models discussed; fully connected outer product 

(oP); randomly diluted outer product with c = 0.5 
bond concentration (D); clipped (c )  and optimally 
clipped (oc) 

Optimal clipping is obtained by using 

if 1x1 > xo 
otherwise 

F ( x )  = 

and choosing xo so that the resulting A. is minimal. The last case, of optimal dilution, 
is given by 

if 1x1 > xo 
otherwise. 

F ( x )  = 

This choice corresponds to deleting bonds with small value of the coupling, and keeping 
the outer product for strong bonds: 

J,, = { i;p if I J;'l> Jo 
otherwise 

where J o = W  xo, and Jop is given by (2.2). Incidentally, for the last two cases 
the fraction of existing bonds is given by 

(5.6) 

In  figure 2(a)  we indicated also the Ao, a,  values that correspond to clipped, diluted 
(with concentration c = i) and optimally clipped bonds. For each of these, as well as 
for the model with outer product couplings, we calculated the basin size R, plotted 
against a in figure 4. As can be expected, the best performance (largest basin) is 
achieved for the original outer product couplings studied previously. 

Turning to the case of optimal dilution, we plot in figure 5 ( a )  a=, the critical a, 
as a function of co, the fraction of existing bonds, while in figure 5 ( b )  we plot a,/co,  
i.e. the storage capacity per bond, against co (full curve). Whereas the storage capacity 
decreases with the dilution, we find that the capacity per bond increases with the 
dilution. A similar effect has been observed by Sompolinsky [6] in the context of the 
Hopfield model. Finally, to compare the effect of random dilution with that of the 

co = 1 - erf(x,/JZ). 
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0.25 

0.20 

0.15 

0 10 

0.05 

I " ' " "  " ~ " " ~ ' " " ' ' ' ~ ' ' ~  
2.0 

1.5 

0 0 02 0 4  0.6 0.8 1.0 

CO 

1 Figure 5. ( a )  Critical storage capacity ac plotted 
against c,,, the fraction of existing bonds, in the case 
of optimal dilution. ( 6 )  Storage capacity per bond 
a J c 0  plotted against c,, for optimal dilution (full 
curve) and for the case of random dilution (broken 

1 ,  , , , , , , , , , , , , , , , , , , , , , , j  curve). ( c )  Equivalent randomly diluted bond con- 
0 0.2 0.4 0.6 0 8 1.0 centration c as a function of optimally diluted bond 

CO concentration c,,. 

optimal dilution, we plot in figure 5 ( b )  a,/c0 for random dilution as well (broken 
curve), and  present, in figure 5 (  c), the equivalent random concentration c against the 
actual optimally diluted concentration co. By equivalent random concentration we 
mean that the randomly diluted model with N ,  bonds has the same storage capacity 
as the optimally diluted model with NCO bonds. As can be seen from the figure, the 
system functions much better in the case of the non-random dilution. 

Finally we mention the last model considered in 0 4, with pseudoinverse couplings. 
For this case figure 1 presents the limiting overlap m , ( a )  for a range of temperatures; 
the radius R of the domain of attraction is given by R = 1 - m,. For completeness' 

'.O ~ 

0.8 

0.6 
R 

0.4 

0.2 

0 
a 

Figure 6.  Size of basin of attraction R plotted against the storage capacity a for pseudo- 
inverse interlayer couplings. 
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sake we present R as a function of CY in figure 6 for the case of T = 0 and pseudoinverse 
couplings between the layers. This situation is intermediate between layered Hebbian 
and strongly diluted [12] networks. For a < a,-0.39 all initial states with non- 
vanishing overlap flow to the correct pattern (as is the case for the diluted model), 
whereas for CY,< a < 1 the memory state has a non-trivial domain of attraction (as in 
the layered network with Hebbian couplings). 

6. Summary and discussion 

We have presented exact results for layered feedforward neural networks with a variety 
of interlayer couplings. In addition to linear Hebbian (outer product) connections, 
we studied the effect of adding static noise, of diluting the bonds in various ways, and 
of introducing couplings whose strength is a non-linear function of the outer product. 
In addition we also solved the case of pseudoinverse couplings between neighbouring 
layers, that take the network with no error through a sequence of random patterns 
assigned to the sequence of layers. 

This family of neural networks is unique in that its dynamics is exactly soluble and 
is controlled by attractors with non-trivial domains of attraction. The only other model 
with exactly soluble dynamics is the extremely diluted asymmetric model of [12]. We 
found that many of our results exhibit qualitative agreement with those obtained for 
the dilute model and also with the fully connected Hopfield model. 

We analysed these three models on similar footing. For all three one finds that the 
stationary states (and their layered analogues) satisfy similar equations for the overlap 
with the recalled key pattern (3.4). This equation is easily interpreted as the Gaussian 
average of the embedding field. The only difference between the three models is in 
the expressions for the width of this distribution. One should keep in mind that the 
embedding field is Gaussian distributed for the layered and dilute networks, whereas 
in the fully connected case this result is incorrect, and is based on approximations 
(such as using a replica-symmetric solution). 

The class of models studied here bridges a gap between physicists’ and non- 
physicists’ models, in that it has input and output units, does not utilise stable states 
of the dynamics but does use random key patterns, over which averages are calculated 
in the thermodynamic limit. More work in the ‘no man’s land’ between physics and 
computer science will, hopefully, advance diffusion of ideas, problems and new results 
between these disciplines. 
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